- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Baird, Andy J (1)
-
Duncan, Neil A. (1)
-
Gallego‐Sala, Angela (1)
-
Gałka, Mariusz (1)
-
Graham, Conor (1)
-
Hocking, Emma P. (1)
-
Kilbride, Elliot (1)
-
Lopez, R Omar (1)
-
Loughlin, Nicholas J. D. (1)
-
Low, Rob (1)
-
Mullan, Donal J (1)
-
Swindles, Graeme T (1)
-
Walker, John H. (1)
-
Whitney, Bronwen S (1)
-
Whitney, Bronwen S. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT AimTropical peatlands are globally significant carbon stores, increasingly threatened by human activities and climate change. However, their ecohydrological responses to shifting water availability remain poorly understood. In this study, we investigate the connections between climate change, hydrology and vegetation dynamics in a coastal tropical peatland in Panama, aiming to understand the effects of future drying on peatland dynamics. LocationBocas del Toro, Panama (9°22′54″N, 82°21′59″W). TaxonAngiosperms. MethodsHigh‐resolution multiproxy palaeoecological data, including pollen and plant macrofossils (vegetation), testate amoebae (water‐table depth) and physical peat properties, are used to explore the relationships between climate change, hydrology and vegetation in a coastal tropical peatland over the past 700 years. Downscaled climate simulations are integrated with this process‐based understanding to project the likely future responses of this coastal peatland to climate change. ResultsWe identify a clear connection between precipitation variability, driven by shifts in the Intertropical Convergence Zone and water‐table dynamics, which subsequently influence changes in the peatland vegetation mosaic. Historical drier periods are marked by the expansion of shrub communities into the open peatland plain. Main ConclusionsPalaeoecological studies incorporating climate and hydrological proxies are essential for understanding both recent and future ecohydrological dynamics of tropical peatlands. Our findings suggest that in response to future climate change, water tables will lower and shrub communities will expand due to rising temperatures and reduced precipitation. Additionally, future sea‐level rise, combined with declining rainfall, may result in seawater intrusion and significant vegetation shifts in coastal tropical peatlands.more » « lessFree, publicly-accessible full text available December 3, 2025
-
Duncan, Neil A.; Loughlin, Nicholas J. D.; Walker, John H.; Hocking, Emma P.; Whitney, Bronwen S. (, Proceedings of the National Academy of Sciences)In landscapes that support economic and cultural activities, human communities actively manage environments and environmental change at a variety of spatial scales that complicate the effects of continental-scale climate. Here, we demonstrate how hydrological conditions were modified by humans against the backdrop of Holocene climate change in southwestern Amazonia. Paleoecological investigations (phytoliths, charcoal, pollen, diatoms) of two sediment cores extracted from within the same permanent wetland, ∼22 km apart, show a 1,500-y difference in when the intensification of land use and management occurred, including raised field agriculture, fire regime, and agroforestry. Although rising precipitation is well known during the mid to late Holocene, human actions manipulated climate-driven hydrological changes on the landscape, revealing differing histories of human landscape domestication. Environmental factors are unable to account for local differences without the mediation of human communities that transformed the region to its current savanna/forest/wetland mosaic beginning at least 3,500 y ago. Regional environmental variables did not drive the choices made by farmers and fishers, who shaped these local contexts to better manage resource extraction. The savannas we observe today were created in the post-European period, where their fire regime and structural diversity were shaped by cattle ranching.more » « less
An official website of the United States government
